ارائه مدلِ بهینه‌‌ پیش‌بینی ورشکستگی با استفاده از الگوریتم علف‌های هرز و ارزیابی کارآیی آن در مقایسه با مدل آلتمن

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد حسابداری، دانشگاه شیراز، گروه حسابداری

2 کارشناس ارشد حسابداری دانشگاه شیراز، گروه حسابداری

چکیده

پیش‌بینی ورشکستگی موضوعی است که بر رفاه اقتصادی تمام کشورها تأثیر می‌گذارد. داشتن یک مدل دقیق برای پیش‌بینی ورشکستگی، به‌طور پیش‌فرض که بتواند نشانه‌های بحران مالی را به‌موقع تشخیص دهد، برای همه‌ی شرکت‌ها بسیار حیاتی است. بنابراین شرکت‌ها، به یک مدل مناسب که بتواند نشانه‌های ورشکستگی را به‌آسانی تشخیص دهد، نیاز دارند.این پژوهش درصدد ارائۀ‌‌ مدل بهینه برای پیش‌بینی ورشکستگی با استفاده از الگوریتم علف‌های هرز می‌باشد. نمونۀ‌‌ آماری پژوهش شامل 112 شرکت ورشکسته وغیرورشکسته پذیرفته‌شده در بورس اوراق بهادار تهران در بازۀ‌‌ زمانی 1393-1381 می‌باشد که ازلحاظ اندازه و صنعت نیز باهم تطابق دارند. جهت ارزیابی کارایی مدل مبتنی بر الگوریتم علف‌های هرز در مقایسه با مدل   آلتمن، دقت مدل‌های مزبور در پیش‌بینی صحیح ورشکستگی شرکت‌ها مورد ارزیابی قرار گرفت. دقت کلی مدل مبتنی بر الگوریتم علف‌های هرز و مدل  آلتمن در سال وقوع ورشکستگی به ترتیب برابر با 32/97 و 46/56 درصد، در سال قبل از وقوع ورشکستگی به ترتیب برابر29/89 و 21/48 درصد و در دو سال قبل از وقوع ورشکستگی، برابر 10/74 و 14/32 درصد می‌باشد. نتایج پژوهش حاکی از این است، که مدل‌های مبتنی بر الگویتم علف‌های هرز در مقایسه با مدل سنتی  آلتمن، با دقت بالاتری ورشکستگی شرکت‌ها را پیش‌بینی می‌نماید.
 

کلیدواژه‌ها